Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A functional human Poly(A) site requires only a potent DSE and an A‐rich upstream sequence

Identifieur interne : 002751 ( Main/Exploration ); précédent : 002750; suivant : 002752

A functional human Poly(A) site requires only a potent DSE and an A‐rich upstream sequence

Auteurs : Nuno Miguel Nunes [Royaume-Uni] ; Wencheng Li [États-Unis] ; Bin Tian [États-Unis] ; André Furger [Royaume-Uni]

Source :

RBID : ISTEX:DBF591446A2F08291203E17A804367EACDC66E15

English descriptors

Abstract

We have analysed the sequences required for cleavage and polyadenylation in the intronless melanocortin 4 receptor (MC4R) pre‐mRNA. Unlike other intronless genes, 3′end processing of the MC4R primary transcript is independent of any auxiliary sequence elements and only requires the core poly(A) sequences. Mutation of the AUUAAA hexamer had little effect on MC4R 3′end processing but small changes in the short DSE severely reduced cleavage efficiency. The MC4R poly(A) site requires only the DSE and an A‐rich upstream sequence to direct efficient cleavage and polyadenylation. Our observation may be highly relevant for the understanding of how human noncanonical poly(A) sites are recognised. This is supported by a genome‐wide analysis of over 10 000 poly(A) sites where we show that many human noncanonical poly(A) signals contain A‐rich upstream sequences and tend to have a higher frequency of U and GU nucleotides in their DSE compared with canonical poly(A) signals. The importance of A‐rich elements for noncanonical poly(A) site recognition was confirmed by mutational analysis of the human JUNB gene, which contains an A‐rich noncanonical poly(A) signal.

Url:
DOI: 10.1038/emboj.2010.42


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A functional human Poly(A) site requires only a potent DSE and an A‐rich upstream sequence</title>
<author>
<name sortKey="Nunes, Nuno Miguel" sort="Nunes, Nuno Miguel" uniqKey="Nunes N" first="Nuno Miguel" last="Nunes">Nuno Miguel Nunes</name>
</author>
<author>
<name sortKey="Li, Wencheng" sort="Li, Wencheng" uniqKey="Li W" first="Wencheng" last="Li">Wencheng Li</name>
</author>
<author>
<name sortKey="Tian, Bin" sort="Tian, Bin" uniqKey="Tian B" first="Bin" last="Tian">Bin Tian</name>
</author>
<author>
<name sortKey="Furger, Andre" sort="Furger, Andre" uniqKey="Furger A" first="André" last="Furger">André Furger</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DBF591446A2F08291203E17A804367EACDC66E15</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1038/emboj.2010.42</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-VCCHXMK4-N/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000377</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000377</idno>
<idno type="wicri:Area/Istex/Curation">000377</idno>
<idno type="wicri:Area/Istex/Checkpoint">000622</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000622</idno>
<idno type="wicri:doubleKey">0261-4189:2010:Nunes N:a:functional:human</idno>
<idno type="wicri:Area/Main/Merge">002776</idno>
<idno type="wicri:Area/Main/Curation">002751</idno>
<idno type="wicri:Area/Main/Exploration">002751</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A functional human Poly(A) site requires only a potent DSE and an A‐rich upstream sequence</title>
<author>
<name sortKey="Nunes, Nuno Miguel" sort="Nunes, Nuno Miguel" uniqKey="Nunes N" first="Nuno Miguel" last="Nunes">Nuno Miguel Nunes</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Laboratory of Genes and Development, Department of Biochemistry, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Li, Wencheng" sort="Li, Wencheng" uniqKey="Li W" first="Wencheng" last="Li">Wencheng Li</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, UMDNJ‐New Jersey Medical School, NJ, Newark</wicri:regionArea>
<wicri:noRegion>Newark</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tian, Bin" sort="Tian, Bin" uniqKey="Tian B" first="Bin" last="Tian">Bin Tian</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, UMDNJ‐New Jersey Medical School, NJ, Newark</wicri:regionArea>
<wicri:noRegion>Newark</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Furger, Andre" sort="Furger, Andre" uniqKey="Furger A" first="André" last="Furger">André Furger</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Laboratory of Genes and Development, Department of Biochemistry, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">The EMBO Journal</title>
<title level="j" type="alt">THE EMBO JOURNAL</title>
<idno type="ISSN">0261-4189</idno>
<idno type="eISSN">1460-2075</idno>
<imprint>
<biblScope unit="vol">29</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1523">1523</biblScope>
<biblScope unit="page" to="1536">1536</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2010-05-05">2010-05-05</date>
</imprint>
<idno type="ISSN">0261-4189</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0261-4189</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Aauaaa</term>
<term>Additional plasmids</term>
<term>Adenosine</term>
<term>Alternative cleavage</term>
<term>Alternative sites</term>
<term>Anking</term>
<term>Anking regions</term>
<term>Anking sequences</term>
<term>Antisense riboprobe</term>
<term>Auuaaa</term>
<term>Auuaaa hexamer</term>
<term>Auxiliary sequence elements</term>
<term>Auxiliary sequences</term>
<term>Bioinformatics</term>
<term>Bioinformatics analysis</term>
<term>Biol</term>
<term>Biology organization</term>
<term>Biology organization sequences</term>
<term>Canonical</term>
<term>Canonical hexamer</term>
<term>Canonical hexamers</term>
<term>Canonical sites</term>
<term>Cell biol</term>
<term>Cells transfected</term>
<term>Cells transiently transfected</term>
<term>Cleavage</term>
<term>Cleavage site</term>
<term>Cleavage stimulation factor</term>
<term>Clone</term>
<term>Composite probe</term>
<term>Core sequences</term>
<term>Cpsf</term>
<term>Cstf</term>
<term>Deletion</term>
<term>Direct cleavage</term>
<term>Ds</term>
<term>Embo</term>
<term>Embo journal</term>
<term>Exact test</term>
<term>Gene</term>
<term>Hexamer</term>
<term>Hexamer mutations</term>
<term>Hexamers</term>
<term>Higher frequency</term>
<term>Human genes</term>
<term>Human sites</term>
<term>Intronless</term>
<term>Intronless genes</term>
<term>Junb</term>
<term>Junb site</term>
<term>Little effect</term>
<term>Many noncanonical sites</term>
<term>Mc4r</term>
<term>Mc4r site</term>
<term>Mrna</term>
<term>Mrna polyadenylation sites</term>
<term>Mutant plasmids</term>
<term>Mutation</term>
<term>Noncanonical</term>
<term>Noncanonical site</term>
<term>Noncanonical sites</term>
<term>Nucleic</term>
<term>Nucleic acids</term>
<term>Nucleotide</term>
<term>Nunes</term>
<term>Plasmid</term>
<term>Point mutations</term>
<term>Polyadenylation</term>
<term>Polyadenylation factor</term>
<term>Polymerase</term>
<term>Primer</term>
<term>Proc natl acad</term>
<term>Processing machinery</term>
<term>Processing signals</term>
<term>Processing site</term>
<term>Processing sites</term>
<term>Proudfoot</term>
<term>Readthrough</term>
<term>Receptor</term>
<term>Sequence element</term>
<term>Sequence elements</term>
<term>Site types</term>
<term>Supplementary figure</term>
<term>Terminal intron removal</term>
<term>Tian</term>
<term>Transcript</term>
<term>Transfected</term>
<term>Uguan</term>
<term>Uguan elements</term>
<term>Uguan motifs</term>
<term>Uguan sequences</term>
<term>Wilusz</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We have analysed the sequences required for cleavage and polyadenylation in the intronless melanocortin 4 receptor (MC4R) pre‐mRNA. Unlike other intronless genes, 3′end processing of the MC4R primary transcript is independent of any auxiliary sequence elements and only requires the core poly(A) sequences. Mutation of the AUUAAA hexamer had little effect on MC4R 3′end processing but small changes in the short DSE severely reduced cleavage efficiency. The MC4R poly(A) site requires only the DSE and an A‐rich upstream sequence to direct efficient cleavage and polyadenylation. Our observation may be highly relevant for the understanding of how human noncanonical poly(A) sites are recognised. This is supported by a genome‐wide analysis of over 10 000 poly(A) sites where we show that many human noncanonical poly(A) signals contain A‐rich upstream sequences and tend to have a higher frequency of U and GU nucleotides in their DSE compared with canonical poly(A) signals. The importance of A‐rich elements for noncanonical poly(A) site recognition was confirmed by mutational analysis of the human JUNB gene, which contains an A‐rich noncanonical poly(A) signal.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Angleterre</li>
<li>Oxfordshire</li>
</region>
<settlement>
<li>Oxford</li>
</settlement>
<orgName>
<li>Université d'Oxford</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Nunes, Nuno Miguel" sort="Nunes, Nuno Miguel" uniqKey="Nunes N" first="Nuno Miguel" last="Nunes">Nuno Miguel Nunes</name>
</region>
<name sortKey="Furger, Andre" sort="Furger, Andre" uniqKey="Furger A" first="André" last="Furger">André Furger</name>
<name sortKey="Furger, Andre" sort="Furger, Andre" uniqKey="Furger A" first="André" last="Furger">André Furger</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Li, Wencheng" sort="Li, Wencheng" uniqKey="Li W" first="Wencheng" last="Li">Wencheng Li</name>
</noRegion>
<name sortKey="Tian, Bin" sort="Tian, Bin" uniqKey="Tian B" first="Bin" last="Tian">Bin Tian</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002751 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002751 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:DBF591446A2F08291203E17A804367EACDC66E15
   |texte=   A functional human Poly(A) site requires only a potent DSE and an A‐rich upstream sequence
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021